

The effect of terrain modeling on simulated dose rates

G. Bijloos^{1,2}, L. Tubex¹, J. Camps¹, J. Meyers²

 ¹ SCK•CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol, Belgium
² Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, 3000 Leuven, Belgium

Problem statement

Near-range atmospheric dispersion can be modelled on various ways

> Different treatments of atmospheric conditions and terrain effects

Do dose rate simulations benefit from improved physical descriptions?

Content

Methodology

Results

Simulation of Ar-41 routine releases

Downstream calculations for a 2 km fetch

Conclusions

Methodology

$$\frac{\partial c}{\partial t} + \boldsymbol{u} \cdot \nabla c = \nabla \cdot (\boldsymbol{K} \nabla c) + Q \delta(\boldsymbol{x} - \boldsymbol{x}_0), \quad \forall \boldsymbol{x} \in D \subset \mathbb{R}^3$$
(1)

with

- *c*: the concentration field $[Bq/m^3]$
- \boldsymbol{u} : the wind field [m/s]
- **K**: the eddy diffusivity $[m^2/s]$
- Q: the source strength [Bq/s]
- x_0 : the source location [m]
- D: the simulation domain

Step 1: solve c from equation (1) for the near range around the source

- buildings are omitted
- terrain and atmospheric conditions are incorporated through the choice of u and K

Different choices of **u** and **K** lead to different models

- Assume a neutral atmosphere
- Wind field is assumed to be uniform in the horizontal plane

Model	u	K	methodology
Gaussian model	constant: $u(z) = u_0$	Pasquill-Gifford (PG) Bultynck-Malet (BM) (Tracer experiments)	Analytical solution from (1) (MATLAB)
Particle model	power law: $u(z) \propto z^{0.33}$	Taylor's statistical turbulence theory	Solve SDE with Euler- Maruyama scheme (MATLAB)
Vegetation canopy dispersion model	similarity scaling (>canopy) ≈ solve NS eqn ¹ (in canopy)	Standard Gradient Hypothesis	Finite volume method (OpenFOAM)

¹ Yi C. 2008. Momentum transfer within canopies. J. Appl. Meteor. Climatol. 47: 262-275.

Methodology

Step 2: calculate the ambient gamma dose rates \dot{d}_{γ} due to the gamma energy released per disintegration E_{γ} [*MeV*] w.r.t. detector location $x' \in \mathbb{R}^3$

$$\dot{d}_{\gamma} = \frac{K_c \mu_{\text{en}} E_{\gamma}}{4\pi} \int \int \int_D \frac{B(\mu r(\boldsymbol{x}))}{r(\boldsymbol{x})^2} e^{-\mu r(\boldsymbol{x})} C(\boldsymbol{x}) d\boldsymbol{x}, \qquad r(\boldsymbol{x}) = \|\boldsymbol{x} - \boldsymbol{x}'\|_2$$

with

 $K_c = 1.6 \times 10^{-3} Gy \cdot kg \cdot MeV^{-1}$ a unit conversion factor μ_{en} : the absorption coefficient for air $[m^2/kg]$ B: the buildup factor μ : the linear attenuation coefficient in air $[m^{-1}]$ $\|\cdot\|_2$: the Euclidean norm

Kenis K, Vervecken L, Camps J. 2013. Gamma dose assessment in near-range atmospheric dispersion simulations. SCK•CEN Reports; No. ER-242. 1:26 p.

Content

Methodology

Results

Simulation of Ar-41 routine releases

Downstream calculations for a 2 km fetch

Conclusions

SCK•CEN site case study

- Dose rate measurements for 7 locations on SCK•CEN site (Mol, Belgium)
 - Ar-41 releases from the BR1 through the chimney (60 m)
- Data was also distributed in context of the NERIS Atmospheric Dispersion Modelling (ADM) experiment (J. Camps, Dublin 2018 workshop)

Simulation of Ar-41 routine releases Q-Q plot

Quantile = cut points that divide the range of a probability distribution into intervals with equal probabilities

Simulation of Ar-41 routine releases Outliers?

Above 100 nSv/h: mainly underestimations

Statistical measures [Chang & Hanna (2004)]: let the subscript o denote the observations and p the predictions, then

$$VG = \exp\left\{\overline{\ln\left(\frac{\dot{d}_{\gamma,o}}{\dot{d}_{\gamma,p}}\right)^2}\right\}, \qquad FACn = \text{fraction of data that satisfy } \frac{1}{n} \le \frac{\dot{d}_{\gamma,o}}{\dot{d}_{\gamma,p}} \le n$$

Additionally, also a hypothetical ground release (10 m) was assumed for the same meteorological data as for the stack release.

Findings

Stack release: 75% < FAC2 < 90%, $FAC10 \approx 100\%$ (w.r.t. measurements)

Release height [m]	$\dot{d}_{\gamma,o}$	$\dot{d}_{\gamma,p}$	VG [-]	FAC2 [-]	FAC10 [-]
60	Gauss (PG)	Canopy	1.20	0.94	1.0
10	Gauss (PG)	Canopy	2.52	0.39	1.0

Content

Methodology

Results

Simulation of Ar-41 routine releases

Downstream calculations for a 2 km fetch

Conclusions

Downstream calculations for a 2 km fetch Ratio's at ground level

Concentration discrepancy is much bigger close to the source than for dose rate

> concentration stronger influenced by terrain roughness modeling

Downstream calculations for a 2 km fetch Ground profiles

- Higher roughness \Rightarrow concentration maximum closer to source
- Location of max. dose rate is stronger influenced by the source than by the max. concentration

Downstream calculations for a 2 km fetch Non-dimensional ground concentration distributions

The canopy and the Gaussian model produce quite different concentration

distributions for both release heights

Closer agreement between the models about the location and value of the max. dose rate than about the max. concentration!

Max. conc.	Locati	Ratio [-]	
Release height [m]	Canopy	Gauss (PG)	Canopy Gauss
60	238	1369	
10	1	155	

Max. dose	Locati	Ratio [-]	
Release height [m]	Canopy	Gauss (PG)	Canopy Gauss
60	191	310	
10	0.3	90	

Content

Methodology

Results

Simulation of Ar-41 routine releases

Downstream calculations for a 2 km fetch

Conclusions

Conclusions (1)

Despite the different terrain parameterizations, all the three models were capable of

- Predicting more than 75% of the dose rates within a factor two
- Predicting the right order of magnitude of the dose rates
- \Rightarrow dose rates are robust quantities to estimate
- \Rightarrow interesting property for source inversion

Conclusions (2)

An improved physical terrain parametrization can still be beneficial

- It reduces the bias and improves the variance prediction of the dose rates
- More important further downstream (>1 km): dose rates were not found to be more robust there than concentrations
 - Factor 2 5 difference between canopy and open field
- Strong influence on the location and value of the max. concentration
 - Important for licensing of nuclear installations

Thank you!

Copyright © 2014 - SCK•CEN

All property rights and copyright are reserved.

Any communication or reproduction of this document, and any communication or use of its content without explicit authorization is prohibited. Any infringement to this rule is illegal and entitles to claim damages from the infringer, without prejudice to any other right in case

of granting a patent or registration in the field of intellectual property.

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSEL Operational Office: Boeretang 200 – BE-2400 MOL