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Radionuclide Dispersal Events
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Modelling RDDs
Necessity

I First response and decision making support
I A priori scenario analyses by response planners
I Physics-based dispersal engine in virtual training environments

Required Capabilities
I Predict dose from passing plume and contaminated surfaces
I Perform data assimilation with various sensors
I Deal with uncertainties/unknowns, e.g., the amount of explosive and

radioactive material(s)

Modelling Stages
I Source term characterization
I Transport and dispersion
I Dose estimation (ground & cloud shine)
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Flow Properties of Radionuclide Dispersal Events

Polydisperse
I Particle size is approximately log-normal

Multi-velocity
I Particles at a location will display a range of velocities

Multi-Regime
I Initially dense particle phase spreads over a large volume
I Initial strong deviations between particle and gas velocities decay to

“simple convection”
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Traditional Transport & Dispersion Models for RDDs
I Gaussian puffs (Lebel et al. (2016),

others)
I Eulerian-Lagrangian (Fuka &

Brechler (2011), others)

Unresolved Issues
I Characterization of the source term

(e.g., treatment of blast and fireball
dynamics)

I Predictions with traditional models
could be quite inaccurate

I Trade-offs between accuracy and
computational cost

Images source: S. Thykier-Nielsen et al., 1998
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Improved Source Term Characterization for RDDs
Hummel & Ivan, JER 172 (2017)

I Eulerian model for background flow
I ~Vbf(t, x) = ~Vblast(t, x) + ~Vwind(t, x)

I ~Vblast provided by a surrogate model
based on CFD data for a
spherically-symmetric TNT explosion

I Lagrangian model for particles

ρp
πd3

p

6
d2x
dt2 = FDx − FdPx

ρp
πd3

p

6
d2y
dt2 = FDy − FdPy

ρp
πd3

p

6
d2z
dt2 = FDz − FdPz + FB + FG
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Stochastic Modelling Option: Direct Particle Tracking
L. Ivan et al., JER 192 (2018)
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Phases of the MCREXS Procedure for RDD Simulation
MCREXS: Multi-Cloud Radiological EXplosive Source (L. Ivan et al., JER 192 (2018))

Figure: 1) Initialization of particles in the explosive device, 2) outward acceleration
in the blast field, 3) deceleration in the atmosphere, 4) conversion to a Gaussian puff,
and the subsequent dispersion and deposition onto the ground.
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Shot 1 of the Suffield Full-Scale RDD Experiments
Ensemble Averaging Over 100 Puff Simulations with 12,800 Particles
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Shot 2 of the Suffield Full-Scale RDD Experiments
Ensemble Averaging Over 100 Puff Simulations with 12,800 Particles
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Shot 3 of the Suffield Full-Scale RDD Experiments
Ensemble Averaging Over 100 Puff Simulations with 12,800 Particles
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Summary for the Suffield Full-Scale RDD Experiments
Ensemble Averaging Over 100 Puff Simulations with 12,800 Particles
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Direct Particle Tracking
Drawbacks

I Expensive
I Stochastic
I Sensitivities are difficult to calculate (inverse problems are hard)
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A Kinetic Description of Polydisperse Flows
F. Forgues et al., under review in JCP (2019)

Multiphase flow can be considered similar to an ideal gas (many particles in
seemingly “random” motion). Traditional Eulerian models can suffer from
modelling artifacts in non-continuous regimes.

Kinetic theory defines a distribution function for the density of identical
particles

F(xi, vi, t)

To allow the particle to be differentiated by a collection of N properties (e.g.,
size, colour, temperature) the distribution function is extended as

F(xi, vi, ζ0, ζ1, . . . , ζN , t)

The distribution function for particles with a range of sizes is extended to
include a diameter space

F(xi, vi, d, t)
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Traditional Moments
Traditional “macroscopic” properties are related to F by moments

∞w

0

y

∞
W(vi, d)F dvi dd = 〈W(vi, d)F〉

nui = 〈viF〉

nΘij = 〈cicjF〉

nΨid = 〈ci(ln d − µ)F〉

nΨdd =
〈
(ln d − µ)2F

〉
where ci = vi − ui is the difference between a particle’s velocity and
the local average and µ is the local average of the logarithm of
particle diameter.
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Evolution of the Distribution Function
Extended Boltzmann equation:

∂F
∂t

+ vα
∂F
∂xα

+
∂

∂vα
(aαF) +

N∑
ĭ=0

∂

∂ζ̆i

(
ΥĭF

)
=

(
δF
δt

)
collision

∂F
∂t

+ vi
∂F
∂xi

+
∂aiF
∂vi

+
∂φF
∂d

=

(
δF
δt

)
collision

Unfortunately,
I High-dimensional
I Expensive to compute
I Not all the information carried by the distribution is necessary
I It is better to take the velocity moments of the Boltzmann

equation
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Moment closure
Velocity moment of the kinetic equation (ignoring collisions and
diameter changes):

∂

∂t
〈WF〉+ ∂

∂xi
〈viWF〉+

〈
W
∂

∂vi
(aiF)

〉
+

〈
�
�
��W

∂φF
∂d

〉
=

〈
�

�
�

W
δF
δt

〉

I System is never closed
I Possible to close the system by choosing F as a function of free

parameters
I Choose F in order to maximize entropy

F = eα
TW
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Polydisperse Gaussian Distribution Function
Assumed form of the distribution function:

F =
n

(2π)2(det Ψij)1/2 e(− 1
2 Ψ−1

ij c̃ic̃j) .

Data show the diameter to be log-normal where

c̃i =


vx − ux

vy − uy

vz − uz

ln(d)− µ

 Ψ =


Θxx Θxy Θxz Ψxd

Θxy Θyy Θyz Ψyd

Θxz Θyz Θzz Ψzd

Ψxd Ψyd Ψzd Ψdd


A generalized Gaussian distribution function can be written for a set
of N properties
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Polydisperse Gaussian Distribution Function
An example distribution in vx-d space:

I Particles display a
range of velocities and
diameters.

I Particles with large
diameters are more
likely to have higher
speeds.

I Ψxd > 0
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Polydisperse Gaussian Model (PGM)
Polydisperse Flows Subject to Aerodynamic Drag, Gravity and Buoyancy Forces

Application of Gaussian moment closure leads to a 15 first-order
hyperbolics PDEs of the form

∂U
∂t

+
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
= S
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Polydisperse Gaussian Model (PGM)

U = n



1
ux

uy

uz

(u2
x + Θxx)

(uxuy + Θxy)
(uxuz + Θxz)
(u2

y + Θyy)
(uyuz + Θyz)
(u2

z + Θzz)
µ

(µux + Ψxd)
(µuy + Ψyd)
(µuz + Ψzd)
(µ2 + Ψdd)



Fx = n



ux

(u2
x + Θxx)

(uxuy + Θxy)
(uxuz + Θxz)

(u3
x + 3uxΘxx)

(u2
xuy + 2uxΘxy + uyΘxx)

(u2
xuz + 2uxΘxz + uzΘxx)

(uxu2
y + uxΘyy + 2uyΘxy)

(uxuyuz + uxΘyz + uyΘxz + uzΘxy)
(uxu2

z + uxΘzz + 2uzΘxz)
(µux + Ψxd)

(µu2
x + 2uxΨxd + µΘxx)

(µuxuy + uxΨyd + uyΨxd + µΘxy)
(µuxuz + uxΨzd + uzΨxd + µΘxz)

(µ2ux + 2µΨxd + uxΨdd)
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Polydisperse Gaussian Model (PGM)
The original ten wavespeed from the ten-moment model for gases
remain and are supplemented by five new waves.

λ1−10 =



ux +
√

3Θxx

ux −
√

3Θxx

ux +
√

Θxx

ux −
√

Θxx

ux +
√

Θxx

ux −
√

Θxx

ux

ux

ux

ux


λ11−15 =


ux +

√
Θxx

ux −
√

Θxx

ux

ux

ux
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Stokes Drag
Finally, a drag law is needed to completely close the system.

FDi =

 Cdρa
πd2

p

8
||~v||vi : Re ≥ 1

3πdpµavi : Re < 1 ,

Cd =
24
Re

+
4.4√
Re

+ 0.42

For now, we assume Stokes drag, i.e., Cd =
24
Re

.

Acceleration of particle:

~ad(t, x) =
~V(t,~x)−~vp

τ
, τ =

ρpd2
p

18µf
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Polydisperse Gaussian Model (PGM)
Source Term Accounting for the Effect of the Aerodynamic Drag

S1 =
n
τG



0
Vx − (ux − 2Ψxd)
Vy − (uy − 2Ψyd)
Vz − (uz − 2Ψzd)

2
(

Vx(ux − 2Ψxd)− (u2
x − 4uxΨxd + 4Ψ2

xd + Θxx)
)

Vx(uy − 2Ψyd) + Vy(ux − 2Ψxd)− 2(uxuy − 2uxΨyd − 2uyΨxd + 4ΨxdΨyd + Θxy)
Vx(uz − 2Ψzd) + Vz(ux − 2Ψxd)− 2(uxuz − 2uxΨzd − 2uzΨxd + 4ΨxdΨzd + Θxz)

2
(

Vy(uy − 2Ψyd)− (u2
y − 4uyΨyd + 4Ψ2

yd + Θyy)
)

Vy(uz − 2Ψzd) + Vz(uy − 2Ψyd)− 2(uyuz − 2uyΨzd − 2uzΨyd + 4ΨydΨzd + Θyz)

2
(

Vz(uz − 2Ψzd)− (u2
z − 4uzΨzd + 4Ψ2

zd + Θzz)
)

0
Vx(µ− 2Ψdd)− (µux − 2µΨxd − 2uxΨdd + 4ΨddΨxd + Ψxd)
Vy(µ− 2Ψdd)− (µuy − 2µΨyd − 2uyΨdd + 4ΨddΨyd + Ψyd)
Vz(µ− 2Ψdd)− (µuz − 2µΨzd − 2uxΨdd + 4ΨddΨzd + Ψzd)

0



,

τG =
ρp

18µf
e2µ−2Ψdd , ~Vbf(t, x) = (Vx,Vy,Vz)
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Polydisperse Gaussian Model (PGM)
Source Term Accounting for the Effect of Gravity and Buoyance Forces

S2 = n



0
φx
φy
φz

2uxφx
uxφy + uyφx
uxφz + uzφx

2uyφy
uyφz + uyφx

2uzφz
0
µφx
µφy
µφz

0



,

φi =
ρp − ρf

ρp
gi
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A Polydisperse Sedimentation Problem
Challenge: capture accurately the different relaxation rates of the particle phase to the
terminal velocities for the complete range of particle diameters

particle density

x
 [

m
]
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t
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Exact, t=1.0

Figure: Comparison between the PGM predictions and exact solution for the
particle density and velocity as a function of the vertical spatial coordinate
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Conclusions
MCREXS Model :

• A hybrid stochastic model for RDD has been
developed
• The model is an improvement relative to
previously proposed models
• Comparisons to RDD experimental data show
good agreement

Gaussian Polydisperse Model :
• A new deterministic polydisperse model for a
wide range of multiphase flow regimes
• The model is globally hyperbolic and
well-posed
• One-dimensional solutions demonstrate the
potential for improved Eulerian predictions
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Ongoing Work

I Account for the presence complex obstacles in the MCREXS
model

I Implement the Gaussian model in an higher-order accurate
multi-dimensional numerical framework

I Investigate problems with background flow that models the
detonation of a radiological dispersal device

I Investigate high-performance algorithms for computational
speed-up
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Supplementary Material

I Proof of Wellposedness
I Exact Solution to the Kinetic Equation
I Numerical Method
I Assess the Drag Law for a Space-Homogeneous Case
I A Riemann Problem with Different Drag Strengths
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Proof of Wellposedness

Back

I The resulting PDEs are hyperbolic and well-posed whenever n
and Ψ is positive definite.

I If one premultiplies the PDE for Ψ by Ψ−1 and uses the identity

∂s log(det(Ψ)) = trace(Ψ−1∂sΨ)

along with the continuity equation, one finds

∂ log
( det Ψ

n2

)
∂t

+ ui
∂ log

(det Ψ
n2

)
∂xi

= −108
(
µf

ρp
e−2µ+2Ψdd

)
I The determinant of Ψ decays exponentially, but never reaches

zero.
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Exact Solution to the Kinetic Equation

Back

The kinetic equation for Stokes drag with zero background flow:

∂F
∂t

+ vi
∂F
∂xi
− ∂

∂vi

(vi

τ
F
)

= 0

With initial conditions, F0(xi, vi, d), this has an exact solution:

F(xi, vi, d, t) = A F0(Bi,Ci, d) ,

with

A = e
3t
τ ,

Bi = xi + viτ(1− e
t
τ ) ,

Ci = vie
t
τ .
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Assess the Drag Law for a Space-Homogeneous Case
Normal distribution function relaxing to a zero velocity; Solution at time t = 0

Figure: Kinetic solution (left) and moment solution (right)
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Assess the Drag Law for a Space-Homogeneous Case
Normal distribution function relaxing to a zero velocity; Solution at time t ≈ 0.61 s

Figure: Kinetic solution (left) and moment solution (right)
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Assess the Drag Law for a Space-Homogeneous Case
Normal distribution function relaxing to a zero velocity; Solution at time t ≈ 1.82 s

Figure: Kinetic solution (left) and moment solution (right)
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Assess the Drag Law for a Space-Homogeneous Case
Normal distribution function relaxing to a zero velocity; Solution at time t ≈ 3.03 s

Back

Figure: Kinetic solution (left) and moment solution (right)
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Numerical Method (operator splitting)
Discretization of the Moment Model

Back

I Simple first-order Godunov-type finite-volume scheme for the
hyperbolic part:

Ũi
n+1

= Ūn
i −

∆t
∆x

(
F̂i+ 1

2
− F̂i− 1

2

)
I The possibly stiff source term is then evaluated analytically to

account for drag.

Comparisons are made to a common “single-velocity” multiphase
treatment:

∂n
∂t

+
∂

∂xj
(nuj) = 0 ,

∂

∂t
(nui) +

∂

∂xj
(nuiuj) = Si ,
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Back
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Ũi
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= Ūn
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∆t
∆x

(
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2
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2

)
I The possibly stiff source term is then evaluated analytically to

account for drag.

Comparisons are made to a common “single-velocity” multiphase
treatment:

∂n
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Numerical Result - ICs for a Riemann problem

For the whole domain Θxx is equal to 1.0 m2/s2, Ψxd is equal to 0 m/s, µ is
equal to ln(28× 10−6 ) and Ψdd is equal to 0.25. A grid of 4000 cells with a
CFL number of 0.5 is used for all cases.
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No drag τ =∞
Particle number (left) and velocity (right) at time t = 1 s
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No drag τ =∞
Θxx (left) and Ψxd (right) at time t = 1 s
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Medium drag τ = 1 s
Particle number (left) and velocity (right) at time t = 1 s
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Medium drag τ = 1 s
Θxx (left) and Ψxd (right) at time t = 1 s

position [m]
Ψ

x
d
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m
/s

]
0 5 10 15 20

0

0.2
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1
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SVM

Time: 1.0s
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Medium drag τ = 1 s
Mean diameter (left) and Ψdd (right) at time t = 1 s

-41-



Strong drag τ = 0.1 s
Particle number (left) and velocity (right) at time t = 0.1 s
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Strong drag τ = 0.1 s
Θxx (left) and Ψxd (right) at time t = 0.1 s
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Strong drag τ = 0.1 s
Mean diameter (left) and Ψdd (right) at time t = 0.1 s

Back

-44-


	Stochastic Approach: MCREXS Model
	A Kinetic Description of Polydisperse Flow
	Deterministic Approach: A Moment Method for Polydisperse Flows
	Conclusions & Ongoing Work



