TRITIUM: A quasi-real time tritium in water monitor for NPPs

Marcos Martínez-Roig, Mireia Simeó, Nadia Yahlali, José Díaz

Instituto de Física Corpuscular Centro Mixto Universitat de València-CSIC

- Tritium is one of the most abundantly produced radioisotopes in nuclear facilities (NPPs, research facilities).
- Tritium is produced abundantly in the nuclear reactor cooling water system of NPPs by deuterium neutron capture and it is finally released to the environment.
- Sudden increase in the tritium release level of NPPs could indicate a malfunctioning of the reactor.
- The development of safeguards able to provide tritium levels in quasi-real time is crucial.

- Tritium is one of the most abundantly produced radioisotopes in nuclear facilities (NPPs, research facilities).
- Tritium is produced abundantly in the nuclear reactor cooling water system of NPPs by deuterium neutron capture and it is finally released to the environment.
- Sudden increase in the tritium release level of NPPs could indicate a malfunctioning of the reactor.
- The development of safeguards able to provide tritium levels in quasi-real time is crucial.

- Tritium is one of the most abundantly produced radioisotopes in nuclear facilities (NPPs, research facilities).
- Tritium is produced abundantly in the nuclear reactor cooling water system of NPPs by deuterium neutron capture and it is finally released to the environment.
- Sudden increase in the tritium release level of NPPs could indicate a malfunctioning of the reactor.
- The development of safeguards able to provide tritium levels in quasi-real time is crucial.

- Tritium is one of the most abundantly produced radioisotopes in nuclear facilities (NPPs, research facilities).
- Tritium is produced abundantly in the nuclear reactor cooling water system of NPPs by deuterium neutron capture and it is finally released to the environment.
- Sudden increase in the tritium release level of NPPs could indicate a malfunctioning of the reactor.
- The development of safeguards able to provide tritium levels in quasi-real time is crucial.

Tritium is measured routinely in Spain in all the points of the Network of Sampling Stations (Red de Estaciones de Muestreo, REM).

Points of measurement

• REM (Network of Samplig Stations) data of the point P2, 1 km downstream from the Cofrentes NPP (Valencia, Spain)¹.

- All measurements are below the legal limit in Spain (100 Bq/L).
- The maximum level of tritium measured is 32 Bq/L.

¹CSN, Red de Estaciones de Muestreo (REM).

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -5

5/35

• REM (Network of Samplig Stations) data of the point P2, 1 km downstream from the Cofrentes NPP (Valencia, Spain)¹.

• All measurements are below the legal limit in Spain (100 Bq/L).

• The maximum level of tritium measured is 32 Bq/L.

¹CSN, Red de Estaciones de Muestreo (REM).

J. Díaz (University of Valencia)

• REM (Network of Samplig Stations) data of the point P2, 1 km downstream from the Cofrentes NPP (Valencia, Spain)¹.

- All measurements are below the legal limit in Spain (100 Bq/L).
- The maximum level of tritium measured is 32 Bq/L.

¹CSN, Red de Estaciones de Muestreo (REM).

J. Díaz (University of Valencia)

• REM data of the point P3, 5 km downstream from the Cofrentes NPP (Valencia, Spain).

• REM data of the point P1, 6 km upstream from the Cofrentes NPP (Valencia, Spain).

- Tritium is the only radioactive isotope of hydrogen present in the environment.
- It is a β^- emitter ($T_{1/2} = 12,32$ years) and decays exclusively to the

- Tritium is the only radioactive isotope of hydrogen present in the environment.
- It is a β^- emitter ($T_{1/2} = 12,32$ years) and decays exclusively to the ground state of the ${}_{2}^{3}$ He isotope.

$$^{3}_{1}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu}_{e}$$

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- *E_{max}* = 18,6 keV
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- $E_{max} = 18,6 \text{ keV}$
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- $E_{max} = 18,6 \text{ keV}$
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- $E_{max} = 18,6 \text{ keV}$
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- $E_{max} = 18,6 \text{ keV}$
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

• The detection of the tritium decay is carried out through its decay electron, whose energy spectrum is:

- β decaying isotope with the lowest energy released .
- $E_{max} = 18,6 \text{ keV}$
 - Short electron mean free path:
 - $\lambda_{max,mat} = 5 6\mu m$
 - Very sensitive detectors are needed.

- Tritium is naturally produced through the interaction of cosmic rays with elements of the upper atmosphere (oxygen, nitrogen, etc.).
- Tritium concentration in environmental water (excluding anthropogenic radioactive sources) is $1 4 \text{ Bq/L}^2$.
- Tritium concentration in rivers around an European NPP is usually around 1 10 Bq/L and even 20 50 Bq/L at the water discharge place.

²Calmon, P. and Garnier-Laplace, J., *Tritium and the Environment.* Radionuclide Shee

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -10

10 / 35

- Tritium is naturally produced through the interaction of cosmic rays with elements of the upper atmosphere (oxygen, nitrogen, etc.).
- Tritium concentration in environmental water (excluding anthropogenic radioactive sources) is 1 – 4 Bq/L².
- Tritium concentration in rivers around an European NPP is usually around 1 10 Bq/L and even 20 50 Bq/L at the water discharge place.

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -10

10 / 35

²Calmon, P. and Garnier-Laplace, J., *Tritium and the Environment*. Radionuclide Sheet.

- Tritium is naturally produced through the interaction of cosmic rays with elements of the upper atmosphere (oxygen, nitrogen, etc.).
- Tritium concentration in environmental water (excluding anthropogenic radioactive sources) is $1 4 \text{ Bq/L}^2$.
- Tritium concentration in rivers around an European NPP is usually around 1 10 Bq/L and even 20 50 Bq/L at the water discharge place.

Tritium and the Environment. Radionuclide Sheet.

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -10

10 / 35

²Calmon, P. and Garnier-Laplace, J.,

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter ($\approx 5 \ \mu$ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

TRITIUM-NERIS 2023 -11

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter ($\approx 5 \ \mu$ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

³COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

TRITIUM-NERIS 2023 -11

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter ($\approx 5 \ \mu$ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

11 / 35

³COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter ($\approx 5 \ \mu$ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

11 / 35

³COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter (\approx 5 μ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

11 / 35

³COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

- Excessive releases of tritium into the environment is one of the first indicators of anomalous operation of a NPP.
- Most NPP accidents can be prevented by monitoring tritium levels released.
- The exposure to high levels of tritium can be external and internal:
 - The radiological hazard from external exposure is low since tritium electrons have a low penetration in matter (\approx 5 μ m).
 - Internal exposure to tritium by ingestion or inhalation produces typical detriment due to radiation exposure.
- The current limit for tritium activity in drinking water in the European Union is 100 Bq/L³.

³COUNCIL DIRECTIVE 2013759/EURATOM, 5 December 2013

Liquid scintillation

- Tritium is measured routinely with Liquid Scintillation Counters (LSC) with accuracy of ~ 1Bq/L.
- However, samples have to be taken manually, and the measurement lasts at least one day.
- The scintillating liquid is highly contaminant which poses a problem for automatic sampling.

Liquid scintillation

- Tritium is measured routinely with Liquid Scintillation Counters (LSC) with accuracy of $\sim 1Bq/L$.
- However, samples have to be taken manually, and the measurement lasts at least one day.
- The scintillating liquid is highly contaminant which poses a problem for automatic sampling.

Liquid scintillation

- Tritium is measured routinely with Liquid Scintillation Counters (LSC) with accuracy of $\sim 1Bq/L$.
- However, samples have to be taken manually, and the measurement lasts at least one day.
- The scintillating liquid is highly contaminant which poses a problem for automatic sampling.

Tritium detection

- To detect the tritium level in water in quasi-real time would provide a crucial information.
- This level should be measured with an accuracy enough to fulfill with the present legislation requirements.
- The problem is particularly important for NPPs placed in the border of countries sharing a common river with waters employed for agriculture and human drinking.

Tritium detection

- To detect the tritium level in water in quasi-real time would provide a crucial information.
- This level should be measured with an accuracy enough to fulfill with the present legislation requirements.
- The problem is particularly important for NPPs placed in the border of countries sharing a common river with waters employed for agriculture and human drinking.

Tritium detection

- To detect the tritium level in water in quasi-real time would provide a crucial information.
- This level should be measured with an accuracy enough to fulfill with the present legislation requirements.
- The problem is particularly important for NPPs placed in the border of countries sharing a common river with waters employed for agriculture and human drinking.

Tritium Detection State-of-the-Art

- A technique of choice for real time monitoring is the use solid plastic scintillators.
- There were several attempts in the past but with too high Minimum Detected Activity (MDA):

Reference	$\begin{array}{c} MDA \\ (kBq\;L^{-1}) \end{array}$
Muramatsu, 1967	370
Moghissi, 1969	37
Osborne, 1970	37
Ratnakaran, 1985	< 37
Hofstetter1, 1992	25

Tabla: Minimum detectable activity (MDA) of scintillator detectorsdeveloped for experiments of tritiated water detection.Legal limit inEurope is 100 Bq/L.

Tritium Detection State-of-the-Art

- A technique of choice for real time monitoring is the use solid plastic scintillators.
- There were several attempts in the past but with too high Minimum Detected Activity (MDA):

Reference	$\begin{array}{c} MDA \\ (kBq \ L^{-1}) \end{array}$
Muramatsu, 1967	370
Moghissi, 1969	37
Osborne, 1970	37
Ratnakaran, 1985	< 37
Hofstetter1, 1992	25

Tabla: Minimum detectable activity (MDA) of scintillator detectorsdeveloped for experiments of tritiated water detection. Legal limit inEurope is 100 Bq/L.

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

 GL Guide line, RDL Reference Dose
 ICRP

 Level, q intake
 RDL (mSv/yr)

 A GL(Gq/L) = good and good and

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

- The current legislation limits the release of tritium into the environment according to guidelines based on the radiation protection methodology developed by the ICRP and recommendations from WHO.
- Their objective is to prevent negative effects of ionizing radiation on people and environment while allowing beneficial activities (The justification, the ALARA principle and <u>dose limitation</u>).

GL Guide line, RDL Reference Dose			
Level, q intake		ICRP	WHO
• $GL(Bq/L) = \frac{RDL}{DCF \cdot q}$	RDL (mSv/yr)	1	0,1
• $DCF = 1.8 \cdot 10^{-11} \text{ Sv/Bq}$	GL(Bq/L)	76 103	7 610
• $q = 730 \text{ L/year}$		IFIC BY ANY OF BUSY	

Country/Agency	GL (Bq/L)
ICRP	76 103
WHO	10 000
Switzerland	10 000
Canada	7 000
Russia	7 700
Australia	76 103
Finland	30 000
United States	740
European Union	100

 Tabla: Legal limits of tritium in drinking water established in several countries.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - **Portugal:** I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - Spain: the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - Portugal: I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - Spain: the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - **Portugal:** I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - **Spain:** the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - Portugal: I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - **Spain:** the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - **Portugal:** I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - **Spain:** the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- **Title:** Design, construction and commissioning of automatic stations for quasi-real time monitoring of low radioactive levels of tritium in water.
- Funded by the Interreg SUDOE program of the EEC in the 2016 call (under contract SOE1/P4/E0214) and some local GVA grants after 2020.
- International consortium of six institutions:
 - **Portugal:** I3N from the University of Aveiro.
 - France: the University of Bordeaux and the CNRS.
 - **Spain:** the University of Extremadura, the Junta de Extremadura and the University of Valencia.

- The TRITIUM **proposal** was to build a tritium monitor based on scintillating fibers immersed in water samples, which is used to detect anomalous tritium releases from Almaraz NPP.
- The TRITIUM monitor is installed 4km drown-stream from the discharge place of Almaraz NPP, near the border of Spain and Portugal.

18 / 35

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -18

Dublin-9/10/2023

- The TRITIUM proposal was to build a tritium monitor based on scintillating fibers immersed in water samples, which is used to detect anomalous tritium releases from Almaraz NPP.
- The TRITIUM monitor is installed 4km drown-stream from the discharge place of Almaraz NPP, near the border of Spain and Portugal.

- The TRITIUM proposal was to build a tritium monitor based on scintillating fibers immersed in water samples, which is used to detect anomalous tritium releases from Almaraz NPP.
- The TRITIUM monitor is installed 4km drown-stream from the discharge place of Almaraz NPP, near the border of Spain and Portugal.

- The TRITIUM proposal was to build a tritium monitor based on scintillating fibers immersed in water samples, which is used to detect anomalous tritium releases from Almaraz NPP.
- The TRITIUM monitor is installed 4km drown-stream from the discharge place of Almaraz NPP, near the border of Spain and Portugal.

- The TRITIUM proposal was to build a tritium monitor based on scintillating fibers immersed in water samples, which is used to detect anomalous tritium releases from Almaraz NPP.
- The TRITIUM monitor is installed 4km drown-stream from the discharge place of Almaraz NPP, near the border of Spain and Portugal.

The TRITIUM Monitor concept

- The choice made by the TRITIUM collaboration was to employ scintillating fibers.
- Tritium electrons are stopped essentially a few micron inside the plastic scintillator.
- This choice magnifies the surface of the plastic scintillator exposed to in-water tritium.

The TRITIUM Monitor concept

- The choice made by the TRITIUM collaboration was to employ scintillating fibers.
- Tritium electrons are stopped essentially a few micron inside the plastic scintillator.
- This choice magnifies the surface of the plastic scintillator exposed to in-water tritium.

The TRITIUM Monitor concept

- The choice made by the TRITIUM collaboration was to employ scintillating fibers.
- Tritium electrons are stopped essentially a few micron inside the plastic scintillator.
- This choice magnifies the surface of the plastic scintillator exposed to in-water tritium.

- A number of prototypes were built within the collaboration which allows us to optimize the final design.
- Geant IV simulations were carried out to decide the optimum fiber thickness and length.
- Different procedures were developed to cut, clean and polish optical fibers to optimize light collection.
- Tests and long measurements were carried out in the laboratory with tritiated water of different specific activities, to obtain the sensitivity and to study the stability in long time measurements.

- A number of prototypes were built within the collaboration which allows us to optimize the final design.
- Geant IV simulations were carried out to decide the optimum fiber thickness and length.
- Different procedures were developed to cut, clean and polish optical fibers to optimize light collection.
- Tests and long measurements were carried out in the laboratory with tritiated water of different specific activities, to obtain the sensitivity and to study the stability in long time measurements.

- A number of prototypes were built within the collaboration which allows us to optimize the final design.
- Geant IV simulations were carried out to decide the optimum fiber thickness and length.
- Different procedures were developed to cut, clean and polish optical fibers to optimize light collection.
- Tests and long measurements were carried out in the laboratory with tritiated water of different specific activities, to obtain the sensitivity and to study the stability in long time measurements.

- A number of prototypes were built within the collaboration which allows us to optimize the final design.
- Geant IV simulations were carried out to decide the optimum fiber thickness and length.
- Different procedures were developed to cut, clean and polish optical fibers to optimize light collection.
- Tests and long measurements were carried out in the laboratory with tritiated water of different specific activities, to obtain the sensitivity and to study the stability in long time measurements.

• Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu *R*2154 022").
- *A* = 30 kBq/L.

• Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu *R*2154 022").
- A = 30 kBq/L.

Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu R2154 022").
 A = 30 kBq/L.

Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu R2154 022").
 A = 30 kBq/L.

Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu R2154 022").
 A = 30 kBg/L.

TRITIUM-Aveiro prototype

Design:

- 360 scintillating fibres ($\phi = 2 \text{ mm}$).
- PTFE vessel:
 - Two PMMA windows (10 mm).
- Two PMTs (Hamamatsu *R*2154 022").
- A = 30 kBq/L.

• Design:

- 800 Scintillating fibres (L = 20 cm).
- PTFE vessel:
- Two PMMA windows (5 mm).
- Two PMTs (Ham. *R*8520 06*SEL*) in the first version and SiPM read out by PETSYS in the final version..

• Design:

- 800 Scintillating fibres (L = 20 cm).
- PTFE vessel:
- Two PMMA windows (5 mm).
- Two PMTs (Ham. *R*8520 06*SEL*) in the first version and SiPM read out by PETSYS in the final version..

• Design:

- 800 Scintillating fibres (L = 20 cm).
- PTFE vessel:
- Two PMMA windows (5 mm).
- Two PMTs (Ham. *R*8520 06*SEL*) in the first version and SiPM read out by PETSYS in the final version..

Design:

- 800 Scintillating fibres (L = 20 cm).
- PTFE vessel:
- Two PMMA windows (5 mm).
- Two PMTs (Ham. *R*8520 06*SEL*) in the first version and SiPM read out by PETSYS in the final version..

- Design:
 - 800 Scintillating fibres (L = 20 cm).
 - PTFE vessel:
 - Two PMMA windows (5 mm).
 - Two PMTs (Ham. *R*8520 06*SEL*) in the first version and SiPM read out by PETSYS in the final version..

The signal and background due to natural radioactivity and cosmic rays

Detector readout: PMT

- PMTs have the advantage of almost no sensitivity to temperature variations but need high voltage.
- They were used in all the preliminary prototypes and in the final Aveiro prototype.

Detector readout: PMT

- PMTs have the advantage of almost no sensitivity to temperature variations but need high voltage.
- They were used in all the preliminary prototypes and in the final Aveiro prototype.

• SiPMs are replacing PMTs in numerous fields.

- They have a high gain and work at low voltage (important for autonomous system).
- Their cost is decreasing very fasts.
- The have the inconvenient of gain variation with temperature, which can be controlled electronically.
- We employed for data taking the commercial PETSYS system conceived for PET imaging.

- SiPMs are replacing PMTs in numerous fields.
- They have a high gain and work at low voltage (important for autonomous system).
- Their cost is decreasing very fasts.
- The have the inconvenient of gain variation with temperature, which can be controlled electronically.
- We employed for data taking the commercial PETSYS system conceived for PET imaging.

- SiPMs are replacing PMTs in numerous fields.
- They have a high gain and work at low voltage (important for autonomous system).
- Their cost is decreasing very fasts.
- The have the inconvenient of gain variation with temperature, which can be controlled electronically.
- We employed for data taking the commercial PETSYS system conceived for PET imaging.

- SiPMs are replacing PMTs in numerous fields.
- They have a high gain and work at low voltage (important for autonomous system).
- Their cost is decreasing very fasts.
- The have the inconvenient of gain variation with temperature, which can be controlled electronically.
- We employed for data taking the commercial PETSYS system conceived for PET imaging.

- SiPMs are replacing PMTs in numerous fields.
- They have a high gain and work at low voltage (important for autonomous system).
- Their cost is decreasing very fasts.
- The have the inconvenient of gain variation with temperature, which can be controlled electronically.
- We employed for data taking the commercial PETSYS system conceived for PET imaging.

 SiPM arrays (S13361-6075AE-04 from Hamamatsu).

G = 4x10° and PDE = 50 %.

• Time Resolution \sim 30 ps

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -26

Dublin-9/10/2023

 SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

• Time Resolution \sim 30 ps

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -26

Dublin-9/10/2023

 SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

• Time Resolution \sim 30 ps

• SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

Time Resolution ~ 30 ps

• SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

• PETSYS.

• Time Resolution \sim 30 ps

• SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

• PETSYS.

 $\bullet\,$ Time Resolution \sim 30 ps

• SiPM arrays (S13361-6075AE-04 from Hamamatsu).

• $G = 4x10^6$ and PDE = 50 %.

• PETSYS.

 ${\, \bullet \,}$ Time Resolution $\sim 30~{\rm ps}$

- The background due to cosmic rays and natural radioactivity is dominant when the signal is low and close to the maximum allowed activities.
- The modules were placed inside an aluminum structure that hold the lead shield to mitigate natural radioactive background.

- The background due to cosmic rays and natural radioactivity is dominant when the signal is low and close to the maximum allowed activities.
- The modules were placed inside an aluminum structure that hold the lead shield to mitigate natural radioactive background.

• Passive shield:

- Lead castle supported by an aluminum structure.
- Suppress the Earth's natural radioactivity ($E_{max} \sim 1$ MeV) and soft component of the cosmic radiation (E < 200 MeV).

Passive shield:

- Lead castle supported by an aluminum structure.
- Suppress the Earth's natural radioactivity ($E_{max} \sim 1$ MeV) and soft component of the cosmic radiation (E < 200 MeV).

- Passive shield:
 - Lead castle supported by an aluminum structure.
 - Suppress the Earth's natural radioactivity ($E_{max} \sim 1 \text{ MeV}$) and soft component of the cosmic radiation (E < 200 MeV).

• Active shield: Two scintillator detectors (above and below the TRITIUM detector). Detection efficiency of 85 % for hard cosmic events.

TRITIUM monitor module

- The water employed by the monitor has to be ultra-pure to avoid deposition in the fibres and maintenance operations.
- A water purification system was installed at the Arrocampo damm site to provide high purity water for the monitor.
- The system has gross, fine and ultra-fine osmosis filtering stages that eliminate particles larger than $1\,\mu m$ and a UV system that destroys organic matter.
- It was verified that the purification method do not alter the tritium content of water.

- The water employed by the monitor has to be ultra-pure to avoid deposition in the fibres and maintenance operations.
- A water purification system was installed at the Arrocampo damm site to provide high purity water for the monitor.
- The system has gross, fine and ultra-fine osmosis filtering stages that eliminate particles larger than $1\,\mu\text{m}$ and a UV system that destroys organic matter.
- It was verified that the purification method do not alter the tritium content of water.

- The water employed by the monitor has to be ultra-pure to avoid deposition in the fibres and maintenance operations.
- A water purification system was installed at the Arrocampo damm site to provide high purity water for the monitor.
- The system has gross, fine and ultra-fine osmosis filtering stages that eliminate particles larger than $1\,\mu\text{m}$ and a UV system that destroys organic matter.
- It was verified that the purification method do not alter the tritium content of water.

- The water employed by the monitor has to be ultra-pure to avoid deposition in the fibres and maintenance operations.
- A water purification system was installed at the Arrocampo damm site to provide high purity water for the monitor.
- The system has gross, fine and ultra-fine osmosis filtering stages that eliminate particles larger than $1\,\mu\text{m}$ and a UV system that destroys organic matter.
- It was verified that the purification method do not alter the tritium content of water.

Design Principles and Components of TRITIUM monitor

Results and Conclusions

 Several TRITIUM prototypes were developed with increasing sensitivity.

- The state of the art of tritium detection was greatly surpassed with the TRITIUM-IFIC-2 prototype. An MDA of 220 Bq/L was obtained with only one module and no cosmic shielding.
- The TRITIUM goal of 100 Bq/L is expected to be achieved, according to GEANT IV simulations, using 5 modules with an integration time of 1 h.
- An active veto was built and characterized, obtaining a detection efficiency of 85 % for hard cosmic rays.
- The prototype modules are currently installed at the Arrocampo dam and the signal is provided to the alert system of Extremadura Junta.

Results and Conclusions

- Several TRITIUM prototypes were developed with increasing sensitivity.
- The state of the art of tritium detection was greatly surpassed with the TRITIUM-IFIC-2 prototype. An MDA of 220 Bq/L was obtained with only one module and no cosmic shielding.
- The TRITIUM goal of 100 Bq/L is expected to be achieved, according to GEANT IV simulations, using 5 modules with an integration time of 1 h.
- An active veto was built and characterized, obtaining a detection efficiency of 85 % for hard cosmic rays.
- The prototype modules are currently installed at the Arrocampo dam and the signal is provided to the alert system of Extremadura Junta.

Results and Conclusions

- Several TRITIUM prototypes were developed with increasing sensitivity.
- The state of the art of tritium detection was greatly surpassed with the TRITIUM-IFIC-2 prototype. An MDA of 220 Bq/L was obtained with only one module and no cosmic shielding.
- The TRITIUM goal of 100 Bq/L is expected to be achieved, according to GEANT IV simulations, using 5 modules with an integration time of 1 h.
- An active veto was built and characterized, obtaining a detection efficiency of 85 % for hard cosmic rays.
- The prototype modules are currently installed at the Arrocampo dam and the signal is provided to the alert system of Extremadura Junta.

34 / 35

Results and Conclusions

- Several TRITIUM prototypes were developed with increasing sensitivity.
- The state of the art of tritium detection was greatly surpassed with the TRITIUM-IFIC-2 prototype. An MDA of 220 Bq/L was obtained with only one module and no cosmic shielding.
- The TRITIUM goal of 100 Bq/L is expected to be achieved, according to GEANT IV simulations, using 5 modules with an integration time of 1 h.
- An active veto was built and characterized, obtaining a detection efficiency of 85 % for hard cosmic rays.
- The prototype modules are currently installed at the Arrocampo dam and the signal is provided to the alert system of Extremadura Junta.

34 / 35

Results and Conclusions

- Several TRITIUM prototypes were developed with increasing sensitivity.
- The state of the art of tritium detection was greatly surpassed with the TRITIUM-IFIC-2 prototype. An MDA of 220 Bq/L was obtained with only one module and no cosmic shielding.
- The TRITIUM goal of 100 Bq/L is expected to be achieved, according to GEANT IV simulations, using 5 modules with an integration time of 1 h.
- An active veto was built and characterized, obtaining a detection efficiency of 85 % for hard cosmic rays.
- The prototype modules are currently installed at the Arrocampo dam and the signal is provided to the alert system of Extremadura Junta.

34 / 35

J. Díaz (University of Valencia)

TRITIUM-NERIS 2023 -35