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Inferring the ambient 
dose equivalent rate

• Goal is to calibrate the dispersion 
model using dose rates through 
Bayesian inference

• Prerequisites
• Good estimate of the background 

dose rate
• Physics-informed uncertainty 

parametrisations for both 
background and dispersion

Observed
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Background prediction
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Camps, J. , Fiengo Perez, F., Geelen, S., Frankemölle, J.P.K.W. & the BUDDAWAK team (2023) 
‘Overview of project results, including a demonstration of the payload’, BUDDAWAK Final 
Workshop, 30 May 2023, Dessel.
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Background prediction

Observed
dose rate

Anomaly

Back-
ground

• Important for
• Source reconstruction (ADM)
• Anomaly detection
• Lost sources

• Data-driven methods based on
• Machine learning (RNNs)
• Maximum likelihood
• Bayesian inference
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TELERAD

* FANC-ACFN, fanc.gov.be
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Bayesian inference cookbook

1. Define likelihood 𝑓 𝑑 𝑚
2. Define prior 𝑓 𝑚
3. Sample posterior 𝑓 𝑑 𝑚
4. Predict

𝑓!|# 𝑚|𝑑 =
𝑓#|! 𝑑|𝑚 𝑓! 𝑚

𝑓# 𝑑
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1. Defining the likelihood

• Let there be a dense network of 𝑘 detectors that measure 𝑁 time intervals

* Liu et al (2018), 10.1371/journal.pone.0205092



<generated automatically>
ISC: Restricted

1. Defining the likelihood

• Let there be a dense network of 𝑘 detectors that measure 𝑁 time intervals
• In a Bayesian world, all observations are distributed as the joint pdf 

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"#

* Liu et al (2018), 10.1371/journal.pone.0205092
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1. Defining the likelihood

• Let there be a dense network of 𝑘 detectors that measure 𝑁 time intervals
• In a Bayesian world, all observations are distributed as the joint pdf 

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"#
• Assuming that temporal errors do not vary over a dense detector network*

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"# =*
$%!

#

𝑓 𝐷!$ , … , 𝐷"$

* Liu et al (2018), 10.1371/journal.pone.0205092
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1. Defining the likelihood

• Let there be a dense network of 𝑘 detectors that measure 𝑁 time intervals
• In a Bayesian world, all observations are distributed as the joint pdf 

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"#
• Assuming that temporal errors do not vary over a dense detector network*

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"# =*
$%!

#

𝑓 𝐷!$ , … , 𝐷"$

• Assuming that the background is the sum of many independent processes
𝑓 𝐷!, … , 𝐷" ~𝒩" 𝝁 = 𝑺; 𝚺 = diag 𝝈 𝝆 diag 𝝈

* Liu et al (2018), 10.1371/journal.pone.0205092
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1. Defining the likelihood

• Let there be a dense network of 𝑘 detectors that measure 𝑁 time intervals
• In a Bayesian world, all observations are distributed as the joint pdf 

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"#
• Assuming that temporal errors do not vary over a dense detector network*

𝑓 𝐷!!, … , 𝐷"!, … , 𝐷!#, … , 𝐷"# =*
$%!

#

𝑓 𝐷!$ , … , 𝐷"$

• Assuming that the background is the sum of many independent processes
𝑓 𝐷!, … , 𝐷" ~𝒩" 𝝁 = 𝑺; 𝚺 = diag 𝝈 𝝆 diag 𝝈

• So the likelihood is a multivariate normal

* Liu et al (2018), 10.1371/journal.pone.0205092
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2. Defining the prior

• Prior on the time-independent background

𝑆& ~ Exp(𝜆 = 1/ ̅𝑆&)
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2. Defining the prior

• Prior on the time-independent background

𝑆& ~ Exp(𝜆 = 1/ ̅𝑆&)

• Prior on the scale vector elements

𝜎& ~ HalfNormal 𝜎' = 10 nSv/h
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2. Defining the prior

• Prior on the time-independent background

𝑆& ~ Exp(𝜆 = 1/ ̅𝑆&)

• Prior on the scale vector elements

𝜎& ~ HalfNormal 𝜎' = 10 nSv/h

• Prior on the scale vector (size of noise)

𝝆 ~ LKJDistribution 𝜂 = 1
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3. Sample the posterior

• PyMC: probabilistic programming library for Python
• Easy model construction
• State-of-art MCMC solvers (default: NUTS)

• Computational optimization using PyTensor
• Convergency tests and post-processing via ArviZ
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4. Verify and predict

• Verification
• Convergency checks
• Posterior predictive

• Prediction
• Conditional distribution 

analytical for multivariate normal!
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Can we put the mathematics into practice?
DOEL MOL
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The calibrated model matches the training data 
very nicely…

6-14 August 2022

BR1 @ MOL
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…and the correspondence is not limited to one 
site. It works just as well for the Doel site…

6-14 August 2022

DOEL



<generated automatically>
ISC: Restricted

…and the calibration is stable in time. This is a 
prediction using data from 4 weeks later!

DOEL
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Rain peaks are also predicted rather well

DOEL
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Beyond dense networks: Doel predictive for Mol?
DOEL MOL



<generated automatically>
ISC: Restricted

Beyond dense networks: Doel predictive for Mol?



<generated automatically>
ISC: Restricted

Bayesian inference cookbook for source inversion

1. Define likelihood 𝑓 𝑑 𝑚
2. Define prior 𝑓 𝑚
3. Sample posterior 𝑓 𝑑 𝑚
4. Predict

𝑓!|# 𝑚|𝑑 =
𝑓#|! 𝑑|𝑚 𝑓! 𝑚

𝑓# 𝑑
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Bayesian inference cookbook for source inversion

1. Define likelihood 𝒇 𝒅 𝒎

2. Define prior 𝑓 𝑚
3. Sample posterior 𝑓 𝑑 𝑚
4. Predict

𝑓!|# 𝑚|𝑑 =
𝑓#|! 𝑑|𝑚 𝑓! 𝑚

𝑓# 𝑑

Observations

𝑄!,# =
𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖 − 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛	𝑚𝑜𝑑𝑒𝑙
Likelihood

𝑓 𝑸! 𝑄$ = 2𝜋 %&'E
#()

&
1

𝜎𝑄*,#
exp −

1
2
ln 𝑄*,#/𝑄+ − 𝜇

𝜎'
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Bayesian inference cookbook for source inversion

1. Define likelihood 𝑓 𝑑 𝑚
2. Define prior 𝒇 𝒎

3. Sample posterior 𝑓 𝑑 𝑚
4. Predict

𝑓!|# 𝑚|𝑑 =
𝑓#|! 𝑑|𝑚 𝑓! 𝑚

𝑓# 𝑑

Prior 𝑸𝐚
𝑄+~	Exp 𝜆 	with	𝜆 =

1
16	MBq/s

Prior 𝝈
𝜎- 	~	HalfNormal 𝜎. = 1	
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Posterior estimates of the source term and model 
error based on ADDER* model & Telerad observ.

56          56.5         57         57.5         58         58.5 0.285  0.290  0.295  0.300  0.305  0.310  0.315  0.320 

Source term 𝑸𝐚 (MBq/s)             Model error 𝝈

* Frankemölle et al (2022), 10.1016/j.jenvrad.2022.107012
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Dose prediction using calibrated model versus 
actual Telerad observations 
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Discussion and outlook

Discussion on background
• Background model works very well despite strong simplifying assumptions
• Derivation from Bayes’s theorem makes these assumptions explicit
• Doel dose rate is a good predictor for Mol despite distance (60km)
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Discussion and outlook

Discussion on background
• Background model works very well despite strong simplifying assumptions
• Derivation from Bayes’s theorem makes these assumptions explicit
• Doel dose rate is a good predictor for Mol despite distance (60km)
Outlook on dispersion (work in progress)
• Formulate model error that includes spatial decorrelation (eddies)
• Go beyond just source inversion by updating multiple parameters (e.g., 

wind speed) à model calibration


