

LARCalc:

An easy-to-use tool to estimate radiation dose and risk from large scale nuclear power plant fallout using ¹³⁷Cs as a key nuclide

Jonathan Sundström Mats Isaksson Christopher Rääf LARCalc, a tool to estimate sex and age specific lifetime attributable risk in populations after nuclear power plant fallout

- Jonathan Sundström^{1*}, Mats Isaksson¹, Christopher L. Rääf²
- ¹Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska
- 7 Academy, University of Gothenburg, Gothenburg, Sweden
 - ²Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
 - *Corresponding author, jonathan.sundstrom@gu.se

Abstract.

1

2

3

4

6

8

9

10 11 12

13

14

15

16 17

18

19

20

21

22

23

24

25

26 27 A tool called LARCalc, for calculating the radiological consequences of accidental nuclear power plant releases based on estimates of ¹³⁷Cs ground deposition, is presented. LARCalc is based on a previously developed models that has been further developed and packaged into an easy-to-use decision support tool for training of decision makers. The software visualises the radiological impact of accidental nuclear power plant releases and the effects of various protective measures. It is thus intended as a rapid alternative for planning protective measures in emergency preparedness management. The tool predicts projected cumulative effective dose, projected lifetime attributable cancer risk, and residual dose for some default accidental release scenarios. Furthermore, it can predict the residual dose and avertable cumulative LAR resulting from various protective measures such as evacuation and decontamination. It can also be used to predict the avertable collective dose and the increase in cancer incidence within the specified population. This study presents the theoretical models and updates to the previous models, and examples of different nuclear fallout scenarios and subsequent protective actions to illustrate the potential use of LARCalc.

Keywords: cumulative effective dose, cumulative lifetime attributable risk, atmospheric fallout, NPP release, protective measures

Submitted manuscript to Scientific Reports

What is LAR

- *LAR* Lifetime Attributable Risk
 - Cancer risk from a one-time low dose exposure
 - Defined for 15 types of cancer
 - Age- and sex-dependent
 - Unlike effective dose
- Cumulative LAR, CUMLAR
 - Continuous exposure

Curve fit of LAR for 15 cancers Data from U.S. Environmental Protection Agency EPA 402-R-11-001

What is LAR

- *LAR* Lifetime Attributable Risk
 - Cancer risk from a one-time low dose exposure
 - Defined for 15 types of cancer
 - Age- and sex-dependent
 - Unlike effective dose
- Cumulative LAR, CUMLAR
 - Continuous exposure

Curve fit of LAR for 15 cancers Data from U.S. Environmental Protection Agency EPA 402-R-11-001

- In-house-made tool
 MATLAB
 - .exe through Runtime
- Estimate the dose and risk
 - Population / individual
 - Age- and sex-dependent
 - Countermeasures
- Fallout scenarios

 ¹³⁷Cs + Nuclide vector
- Visualization of effects

- In-house-made tool
 MATLAB
 - .exe through Runtime
- Estimate the dose and risk
 - Population / individual
 - Age- and sex-dependent
 - Countermeasures
- Fallout scenarios

 ¹³⁷Cs + Nuclide vector
- Visualization of effects

- In-house-made tool
 MATLAB
 - .exe through Runtime
- Estimate the dose and risk
 - Population / individual
 - Age- and sex-dependent
 - Countermeasures
- Fallout scenarios

 ¹³⁷Cs + Nuclide vector
- Visualization of effects

- In-house-made tool
 MATLAB
 - .exe through Runtime
- Estimate the dose and risk
 - Population / individual
 - Age- and sex-dependent
 - Countermeasures
- Fallout scenarios

 ¹³⁷Cs + Nuclide vector
- Visualization of effects

Overview of the LARCalc sub-models

Overview of the LARCalc sub-models

Overview of the LARCalc sub-models

- Indoor stay
 - Reduces inhalation dose and external exposure
- Evacuation
 - Eliminates all exposure
- Food restrictions
 - Reduces dose from ingested Cs, Sr and I
- Decontamination
 - Reduces future dose from external exposure

- Indoor stay
 - Reduces inhalation dose and external exposure
- Evacuation
 - Eliminates all exposure
- Food restrictions
 - Reduces dose from ingested Cs, Sr and I
- Decontamination
 - Reduces future dose from external exposure

- Indoor stay
 - Reduces inhalation dose and external exposure
- Evacuation
 - Eliminates all exposure
- Food restrictions
 - Reduces dose from ingested Cs, Sr and I
- Decontamination
 - Reduces future dose from external exposure

- Indoor stay
 - Reduces inhalation dose and external exposure
- Evacuation
 - Eliminates all exposure
- Food restrictions
 - Reduces dose from ingested Cs, Sr and I
- Decontamination
 - Reduces future dose from external exposure

- Indoor stay
 7 days
 - Reduces inhalation dose and external exposure
- Evacuation 1 year
 - Eliminates all exposure
- Food restrictions 50 %, 15 years
 - Reduces dose from ingested Cs, Sr and I
- Decontamination 50 %, after evacuation
 - Reduces future dose from external exposure

5

Examples for the population in Dublin (Total 592 713)

The Chernobyl fallout normalized to 1 MBq/m² (¹³⁷Cs) and previously mentioned countermeasures

UNIVERSITY OF GOTHENBURG | SAHLGRENSKA ACADEMY | NERIS Workshop, ERPW Conference, Dublin 2023

Examples for the population in Dublin (Total 592 713)

The Chernobyl fallout normalized to 1 MBq/m² (¹³⁷Cs) and previously mentioned countermeasures

UNIVERSITY OF GOTHENBURG | SAHLGRENSKA ACADEMY | NERIS Workshop, ERPW Conference, Dublin 2023

Compared to COSYMA

- A similar tool from the 90s
 - 0.4x 4.6x COSYMA
 - Suspects uncertainties
- ICRP 144
 - Only physical and biological decay
 - 84,5 mSv/(MBq m⁻²) ¹³⁷Cs

mSv/(MBq m⁻²)	¹³⁷ Cs		⁹⁰ Sr	
	COSYMA	LARCalc	COSYMA	LARCalc
Internal effective dose	12.4	23.4	81	32.7
External effective dose	8.6	39.5	0	0.040

Compared to COSYMA

- A similar tool from the 90s
 - 0.4x 4.6x COSYMA
 - Suspects uncertainties
- ICRP 144
 - Only physical and biological decay
 - 84,5 mSv/(MBq m⁻²) ¹³⁷Cs

mSv/(MBq m ⁻²)	¹³⁷ Cs		⁹⁰ Sr	
	COSYMA	LARCalc	COSYMA	LARCalc
Internal effective dose	12.4	23.4	81	32.7
External effective dose	8.6	39.5	0	0.040

Uncertainty analysis

- 50 000 iterations
- 28 Parameters
- Median
 225.8 mSv
- 5th percentile 118.8 mSv
- 95th percentile 429.5 mSv
- Overall uncertainty
 - $-\pm$ factor of 2

Uncertainty analysis

- 50 000 iterations
- 28 Parameters
- Median 225.8 mSv
- 5th percentile 118.8 mSv
- 95th percentile 429.5 mSv
- Overall uncertainty
 - $-\pm$ factor of 2

Uncertainty analysis

- 50 000 iterations
- 28 Parameters
- Median 225.8 mSv
- 5th percentile 118.8 mSv
- 95th percentile 429.5 mSv
- Overall uncertainty
 - $-\pm$ factor of 2

- Keep updating during my PhD-studies
- Update with ICRP:s new doses to members of the public
- Update with NORM pathways
- Remake in Python and/or as an online tool

- Keep updating during my PhD-studies
- Update with ICRP:s new doses to members of the public
- Update with NORM pathways
- Remake in Python and/or as an online tool

- Keep updating during my PhD-studies
- Update with ICRP:s new doses to members of the public
- Update with NORM pathways
- Remake in Python and/or as an online tool

- Keep updating during my PhD-studies
- Update with ICRP:s new doses to members of the public
- Update with NORM pathways
- Remake in Python and/or as an online tool

- Tool to estimate dose- and risk from a large scale NPP emission
- Age-, sex-, and organ-specific
- Event-specific
 - Local and regional ¹³⁷Cs deposition
 - Nuclide vector
- Effects of various combinations of countermeasures
- Quite significant uncertainties

- Tool to estimate dose- and risk from a large scale NPP emission
- Age-, sex-, and organ-specific
- Event-specific
 - Local and regional ¹³⁷Cs deposition
 - Nuclide vector
- Effects of various combinations of countermeasures
- Quite significant uncertainties

- Tool to estimate dose- and risk from a large scale NPP emission
- Age-, sex-, and organ-specific
- Event-specific
 - Local and regional ¹³⁷Cs deposition
 - Nuclide vector
- Effects of various combinations of countermeasures
- Quite significant uncertainties

- Tool to estimate dose- and risk from a large scale NPP emission
- Age-, sex-, and organ-specific
- Event-specific
 - Local and regional ¹³⁷Cs deposition
 - Nuclide vector
- Effects of various combinations of countermeasures
- Quite significant uncertainties

- Tool to estimate dose- and risk from a large scale NPP emission
- Age-, sex-, and organ-specific
- Event-specific
 - Local and regional ¹³⁷Cs deposition
 - Nuclide vector
- Effects of various combinations of countermeasures
- Quite significant uncertainties

Special thanks to

for their financial support

UNIVERSITY OF GOTHENBURG | SAHLGRENSKA ACADEMY | NERIS Workshop, ERPW Conference, Dublin 2023

2023-10-09

12

Thank you for your time! jonathan.sundstrom@gu.se

2023-10-09