

Florian Mertes, Thomas Hamburger, Stefan Schantz, Yevhen Yevdin, <u>Florian Gering</u>, Thomas Schichtel, Dmytro Trybushnyi

NERIS workshop, ERPW

2023-10-09, Dublin

Overview

1. Dispersion modeling at BfS

 \rightarrow RODOS

- 2. Source term
 - Geometry
 - Aerosol particles / sizes
 - Radioisotopes
- 3. Statistical assessment: Radiological consequences of 10 kt yield detonation
 - \rightarrow Typical distances for protective measures

Dose projection tools

- at BfS: Routine operation of "RODOS" (Realtime Online Decision Support System)
- Other countries/organizations also use "ARGOS" or own developments

- Source term:
 - Activity per radionuclide
 - Release height/location/geometry
 - Particle size distribution
- Meteo-data: ICON-EU in 24 height-levels up to 10 km ca.: 10, 41, 95, 165, 250, 350, 470, 590, 730, 890, 1050, 1200, 1400, 1600, 1810, 2030, 2260, 2750, 3560, 4430, 5470, 6800, 8150, 9200 meters above surface
- Dose projection tools can be used to assess typical radiological consequences:

Statistical calculations for many different meteo. conditions (e.g. for 365 days)

- → Compare dose projections to predefined/legal threshold levels
- → Statistics over e.g. distance up to which countermeasures typically have to be applied

Source term - Geometry

- Nuclear detonations cause an initial fireball, inside of which all matter is vaporized
- As the fireball expands, it cools down quickly
- This results in a typical formation of winds that lead to the stabilization into the typical mushroom cloud
- Materials in the cloud subject to upward motion
- Stable cloud after around 10 minutes
 - \rightarrow Starting point of dispersion modeling
- Dimension of the cloud ∝ yield

Source term - Geometry

- Updraft causes most activity to be in the head of the cloud
- Total cloud height can be much larger than 10 km
- Activity/Height distribution parametrized in 6 layers (Rolph et. al., 2014)

 Total height, layer heights, cloud radius, and head/stem ratio are parametrized and determined by user input of the detonation yield Table 1

Yield (kT)	≤2.5	≤7.5	≤12.5	≤17.5	≤22.5	≤27.5	≤32.5	≤37.5	≤42.5	≤45.0
Level 7	3700	6300	8200	9700	10800	11200	11600	11900	12200	12500
Level 6	3132	5434	7166	8532	9532	9900	10232	10500	10766	11000
Level 5	2566	4567	6130	7366	8266	8600	8866	9100	9333	9500
Level 4	2000	3700	5100	6200	7000	7300	7500	7700	7900	8000
Level 3	1334	2466	3400	4132	4666	4866	5000	5132	5266	5332
Level 2	667	1233	1700	2066	2333	2433	2500	2566	2633	2666
Level 1	0	0	0	0	0	0	0	0	0	0

Model cloud layer heights (meters above ground level) based on nuclear yield in kilotons (kT).

Table: Rolph G.D., Ngan F., Draxler R.R., 2014 http://dx.doi.org/10.1016/j.jenvrad.2014.05.006

Source term – Particle size distributions

- As vaporized radioisotopes cool down, they condense, typically onto debris particles
- The distribution of available particles depends strongly on the type of the detonation. Most notable are surface detonations, which suck in a vast amount of dirt

 \rightarrow Assumptions for modeling: surface burst

with Glasstone's distribution

- Activity-particle size distribution is well known to be log-normal, but quite different distributions have been observed
- Simplification: All isotopes have the same distribution
- Simplification: All particles contribute equally to inhalation dose (→ overestimation)
- Physically: Different condensation temperatures or decay properties cause Element-/Isotope-specific particle size distributions

Image: Rolph G.D., Ngan F., Draxler R.R., 2014

Source term – Radioisotopes

- Nuclear detonation has different means of producing radioactive isotopes:
 - Fission products
 - Activation products of the weapon materials
 - Activation products of surrounding soil and air
 - Unfissioned fuel
- The amount of initially produced different nuclides during a detonation can be estimated to be on the order of 1000
 - → Selection of radionuclides is neccessary for modeling
 - → Identify those, which are most dose-relevant (Kraus T., Foster K., 2014)

Kraus T., Foster K., Health Physics, 2014 DOI: 10.1097/HP.0000000000000086 Images: JAEA Nuclear Data Center

Source term – Radioisotopes

- Source-Term estimation combining information from
 - ENDF-B/VIII fission yields and decay data
 - Kraus and Foster, 2014
 - Spriggs and Egbert (2020, Hiroshima estimation, LLNL)
- Limitation: 44 Total nuclides can be considered in RODOS
 - → Select subset of nuclides, such that projected activity at 10 minutes after burst best matches theoretical projection (starting from fission yields)
 - → Includes most dose-relevant nuclides (> 95 % of dose) per Kraus/Foster
 - ightarrow scale activity with yield
- Physically: Vast amount of very short-lived nuclides cause very high dose in the initial phase: Underestimation of dose in close proximity (on the few km scale)

Spriggs, Egbert, LLNL technical report, 2020 https://doi.org/10.2172/1668494

Fallout modeling – Examples – total surface Beta contamination (temporal maximum)

Statistical assessments – 10 kT yield – Example: Gamma dose rate (GDR)

Typical assessments: Distances in which certain radiological criteria are exceeded (e.g. in the 90 % overlapping interval/percentile)

\rightarrow "in 90 % of cases, the criteria for countermeasure X are fulfilled in a distance less than Y km"

→ here: Gamma-dose rate > 1 µSv/h is a general criterion for the appropriateness of recommendations to the public (e.g. to avoid incorporation)
→ can be exceeded up to a distance of more than 800 km

Statistical assessments – 10 kT yield – deterministic effects

Effective Dose, 7 d, adults Thyroid iodine dose, 7 d, adults 10006 10000 1000 1000 -100 100 100 mSv 10 10 1 1 0.1 0.1 10 100 1000 10 100 1000 distance / km distance / km Effective Dose, 7 d, children Thyroid iodine dose, 7 d, children 10000 10000 1000 1000 100 100 100 mSv 10 10 10 1 1 0.1 0.1 10 100 1000 100 10 1000 distance / km distance / km

Statistical assessments – 10 kT yield – urgent actions

thresholds based on German legislation

7 d effective, unprotected dose:

- > 100 mSv up to 160 km (evacuation)
- > 10 mSv up to 270 km (sheltering)

 \rightarrow evacuation can likely not be applied in event; resort to sheltering

Thyroid doses due to inhalation of iodines do not exceed threshold levels for iodine thyroid blocking (250 mSv adults, 50 mSv for children)

\rightarrow lodine thyroid blocking not recommended

Sheltering of children Iodine contamination leafy vegetables > threshold 800 km 800 km potential radiological consequences of a nuclear detonation of 10 kT yield 8000 -800 km -800 km -800 km -800 km 800 km 800 km 0.0 0.2 0.4 0.6 0.8 1.0

Overview consequences for 10 kT yield

Statistical assessments – Predominant early exposure pathway and protective measures

- In the overwhelming number of cases (weather + location):
 - Inhalation dose is only a minor contributor
 - Ground dose is most important
- Temporal evolution of dose-rate:

Power law decline of dose-rate makes early/immediate protective measures very important and effective:

"For every 7-fold increase in time, dose-rate decreases by a factor of 10"

Recommended actions need to be such that they can be applied by everyone, ideally, without external support

 \rightarrow Sheltering!

Dependance on yield – Examples for distinct weather scenarios

Outlook – future work

- Limitations of current dispersion model / implementation using proprietary LASAT atmospheric dispersion model (ADM):
 - calculations only up to 10 km, not validated for high altitudes
 - refined/customizable particle-size distributions
 - enhanced decay-chain calculations (e.g. noble-gas → aerosol decays)
 - \rightarrow Implementation and adaptation of FLEXPART ADM

- Modeling of initial radiation \rightarrow calculation of ATP-45 zones
- Comparison with historical events (e.g. surface level tests) using reanalysis weather data and unclassified measurements

Thank you for your attention!

Legal Notice

Bundesamt für Strahlenschutz Postfach 10 01 49 38201 Salzgitter

Tel.: +49 30 18333-0 Fax: +49 30 18333-1885 E-Mail: ePost@bfs.de

www.bfs.de

Contact for questions Florian Mertes fmertes@bfs.de +49 30 18333-2573

Questions?

Source term - Geometry

• Parametrizations taken from literature: Glasstone and Dolan, NATO ATP-45

Source term – Radioisotopes

